Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-[4-(1H-Imidazol-1-yl)phenyl]-2H-tetrazole dihydrate

Yan-Hua Zhang and Da-Min Tian*

Department of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, People's Republic of China Correspondence e-mail: tiandamin2009@163.com

Received 21 May 2011; accepted 24 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.075; wR factor = 0.243; data-to-parameter ratio = 11.9.

In the title compound, $C_{10}H_8N_6\cdot 2H_2O$, the central aromatic ring makes dihedral angles of 23.59 (15) and 16.99 (16) $^{\circ}$ with the terminal imidazole and tetrazole rings, respectively, which are themselves almost coplanar [dihedral angle = $6.61 (18)^{\circ}$]. Two H atoms of the two water molecules are half occupied. In the crystal packing, weak intermolecular O-H···N, O-H···O and N-H···N hydrogen bonds and π - π stacking interactions [centroid–centroid distances of 3.73 (4) Å between benzene rings and 3.66 (3) Å between imidazole and tetrazole rings] are observed.

Related literature

For the biological activity of imidazole derivatives, see: Reichardt et al. (1992)

c = 10.2047 (11) Å

Experimental

Crystal data $C_{10}H_8N_6\cdot 2H_2O$ M_r

$M_r = 248.26$	$\alpha = 97.011 \ (1)^{\circ}$
Triclinic, P1	$\beta = 90.813 \ (1)^{\circ}$
a = 7.4300 (7) Å	$\gamma = 113.449 \ (2)^{\circ}$
b = 8.2285 (9) Å	$V = 566.74 (10) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.960, \ T_{\rm max} = 0.983$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.075$ $wR(F^2) = 0.243$ S = 1.051953 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 02 - H2D \cdots N2^{i} \\ 02 - H2D \cdots N3^{i} \\ 02 - H2C \cdots 01^{ii} \\ 02 - H2A \cdots 01 \\ 01 - H1D \cdots 02^{ii} \end{array}$	0.85	2.50	3.235 (7)	146
	0.85	1.98	2.823 (7)	172
	0.85	2.15	2.994 (9)	170
	0.85	1.92	2.629 (9)	141
	0.85	2.55	2.994 (9)	114
$01 - H1D \cdots 02$	0.85	1.78	2.629 (9)	175
$01 - H1C \cdots 01^{iii}$	0.85	1.96	2.806 (11)	175
$01 - H1A \cdots N1$	0.85	1.99	2.790 (5)	157
$N2 - H2 \cdots N6^{iv}$	0.86	1.90	2.758 (5)	174

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z; (iii) -x + 1, -y + 1, -z; (iv) x, y - 1, z - 1.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge Henan University of Urban Construction for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2291).

References

Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Reichardt, B. A., Belyavtseva, L. M. & Kulikova, O. G. (1992). Bull. Exp. Biol. Med. 113, 506-508.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

 $0.38 \times 0.17 \times 0.16 \; \rm mm$

2913 measured reflections

1953 independent reflections

1199 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 298 K

 $R_{\rm int} = 0.024$

164 parameters

 $\Delta \rho_{\text{max}} = 0.40 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$

supplementary materials

Acta Cryst. (2011). E67, o1537 [doi:10.1107/S1600536811019647]

5-[4-(1H-Imidazol-1-yl)phenyl]-2H-tetrazole dihydrate

Y.-H. Zhang and D.-M. Tian

Comment

Imidazole derivatives possessing the biologically important imidiazole ring, have been studied in terms of their biological activities (Reichardt *et al.*, 1992). Inspired by this, we focus on the studies of imidazole derivatives Recently, we have obtain a new crystal structure of imidazole derivative (1-tetrazole-4-imidazole-benzene), which is crystallized by the slow evaporation of ethonal sovlent at room temperaure.

As shown in Fig.1, the title molecule crystallizes as a neutral, with two terminal imidazole and tetrazole rings almost coplanar with the dihedral angle of 6.61 (18) °. They makes dihedral angles of 23.59 (15) ° and 16.99 (16) ° with the central aromatic ring. It is noted that there are two types of π - π stacking interactions: one occurs between parallel benzene rings with centroid-centroid distances of 3.73 (4) Å; the other occurs between the imidazole and tetrazole rings with centroid distances of 3.66 (3) Å. Thus, A wide range of hydrogen bonds (O—H…N, O—H…O and N—H…N) and π - π stacking interactions contribute to the formation of the supramolecular network.

Experimental

1-tetrazole-4-imidazole-benzene(0.1 g, 0.4 mmol) was dissolved in ethonal (20 ml) and the solution was left to evaporate slowly at room temperature. After a week, colourless crystals suitable for X-ray analysis were obtained.

Refinement

Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O—H = 0.82 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C, N)$. H atoms of the water molecule were located in a difference Fourier map and refined as riding with an O—H distance restraint of 0.84 (1) Å, with $U_{iso}(H) = 1.5 U_{eq}$. two hydgrogen atoms from two water molecules are half ocuppied and split into two atoms, respectively.

Figures

Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids

5-[4-(1*H*-Imidazol-1-yl)phenyl]-2*H*-tetrazole dihydrate

Crystal data	
$C_{10}H_8N_6\cdot 2H_2O$	Z = 2
$M_r = 248.26$	F(000) = 260
Triclinic, <i>P</i> T	$D_{\rm x} = 1.455 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.4300 (7) Å	Cell parameters from 1702 reflections
b = 8.2285 (9) Å	$\theta = 2.5 - 25.9^{\circ}$
c = 10.2047 (11) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 97.011 \ (1)^{\circ}$	T = 298 K
$\beta = 90.813 \ (1)^{\circ}$	Block, colorless
$\gamma = 113.449 \ (2)^{\circ}$	$0.38 \times 0.17 \times 0.16 \text{ mm}$
$V = 566.74 (10) \text{ Å}^3$	

Data collection

1953 independent reflections
1199 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
$h = -8 \rightarrow 8$
$k = -9 \rightarrow 9$
$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.075$	H-atom parameters constrained
$wR(F^2) = 0.243$	$w = 1/[\sigma^2(F_o^2) + (0.1194P)^2 + 0.5477P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1953 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
164 parameters	$\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct matheds	Extinction coefficient: 0.13 (2)

P methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y 0.0420 (9) N1 0.2591 (5) 0.1994(4)0.1928 (3) N2 0.2495 (6) 0.0363 (4) 0.1481 (3) 0.0483 (10) H2 0.2561 -0.00080.0665 0.058* N3 0.0499 (10) 0.2288(6)-0.0589(5)0.2440(3)N4 0.2239 (6) 0.0414 (4) 0.3577 (3) 0.0457 (10) N5 0.2568(4)0.7806(4)0.6934(3)0.0329 (8) N6 0.2612(5)0.9372(4)0.8813(3)0.0447(10)01 0.2945 (8) 0.4108 (6) -0.0073(4)0.1116 (18) H1A 0.2650 0.3229 0.0363 0.134* 0.50 H1C 0.4182 0.4705 -0.00130.134* H1D 0.50 0.2401 0.4795 0.0231 0.134* 02 0.1048 (12) 0.6070 (9) 0.0820(6) 0.183(3)H2A 0.50 0.2078 0.5941 0.0576 0.220* H2C 0.50 -0.01110.5894 0.0548 0.220* H2D 0.1533 0.7067 0.1322 0.220* C1 0.2426 (5) 0.1985 (5) 0.3235 (3) 0.0320 (9) C2 0.2436 (5) 0.3498 (5) 0.4159 (3) 0.0304 (9) C3 0.3121 (6) 0.5229 (5) 0.3835 (3) 0.0377 (10) H3 0.3556 0.5438 0.2997 0.045* C4 0.3163 (6) 0.6638 (5) 0.4737 (4) 0.0367 (10) H4A 0.3632 0.7788 0.4508 0.044* C5 0.2507 (5) 0.6338 (5) 0.5985 (3) 0.0296 (9) C6 0.1766 (6) 0.4619 (5) 0.6316 (3) 0.0372 (10) H6 0.1290 0.4413 0.7144 0.045* C7 0.1736 (6) 0.3217 (5) 0.5418 (3) 0.0374 (10) H70.1245 0.2067 0.5648 0.045* C8 0.2597 (6) 0.7830(6) 0.8248 (4) 0.0416(11) H8 0.2604 0.6911 0.8692 0.050* C9 0.2610 (6) 1.0379 (5) 0.7849 (4) 0.0436 (11) H9 0.2632 1.1526 0.7977 0.052* C10 0.2571 (6) 0.9415 (5) 0.6680(4) 0.0424 (11) H10 0.9768 0.051* 0.2550 0.5850

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.059 (2)	0.0374 (19)	0.0299 (17)	0.0204 (17)	0.0075 (15)	-0.0007 (14)
N2	0.075 (3)	0.044 (2)	0.0252 (17)	0.027 (2)	0.0086 (16)	-0.0097 (15)
N3	0.077 (3)	0.043 (2)	0.0345 (18)	0.032 (2)	0.0062 (17)	-0.0028 (16)
N4	0.070 (3)	0.0366 (19)	0.0340 (18)	0.0267 (18)	0.0090 (16)	0.0007 (15)
N5	0.0396 (19)	0.0335 (18)	0.0248 (16)	0.0156 (15)	0.0047 (13)	-0.0015 (13)
N6	0.053 (2)	0.045 (2)	0.0346 (18)	0.0218 (18)	0.0061 (15)	-0.0048 (16)
01	0.194 (5)	0.088 (3)	0.069 (3)	0.067 (3)	0.034 (3)	0.033 (2)
O2	0.248 (9)	0.142 (6)	0.156 (6)	0.078 (6)	0.023 (6)	0.004 (5)
C1	0.035 (2)	0.036 (2)	0.0244 (18)	0.0141 (17)	0.0037 (15)	0.0017 (16)
C2	0.032 (2)	0.036 (2)	0.0239 (18)	0.0159 (17)	0.0013 (14)	-0.0017 (15)
C3	0.049 (3)	0.041 (2)	0.0230 (18)	0.0178 (19)	0.0084 (16)	0.0051 (16)
C4	0.050 (3)	0.028 (2)	0.031 (2)	0.0137 (18)	0.0091 (17)	0.0055 (16)
C5	0.033 (2)	0.031 (2)	0.0250 (18)	0.0151 (17)	0.0019 (14)	-0.0005 (15)
C6	0.050 (3)	0.039 (2)	0.0242 (18)	0.019 (2)	0.0149 (16)	0.0045 (16)
C7	0.052 (3)	0.032 (2)	0.0300 (19)	0.0187 (19)	0.0100 (17)	0.0056 (16)
C8	0.054 (3)	0.043 (2)	0.0271 (19)	0.020 (2)	0.0049 (17)	-0.0005 (17)
C9	0.057 (3)	0.036 (2)	0.040 (2)	0.023 (2)	0.0051 (19)	-0.0023 (18)
C10	0.061 (3)	0.036 (2)	0.033 (2)	0.023 (2)	0.0077 (18)	0.0022 (17)

Geometric parameters (Å, °)

N1—N2	1.337 (5)	O2—H2D	0.8501
N1—C1	1.341 (5)	C1—C2	1.465 (5)
N2—N3	1.300 (5)	C2—C3	1.393 (5)
N2—H2	0.8600	C2—C7	1.403 (5)
N3—N4	1.350 (5)	C3—C4	1.379 (5)
N4—C1	1.335 (5)	С3—Н3	0.9300
N5—C8	1.338 (5)	C4—C5	1.386 (5)
N5—C10	1.379 (5)	C4—H4A	0.9300
N5—C5	1.438 (5)	C5—C6	1.385 (5)
N6—C8	1.324 (5)	C6—C7	1.375 (5)
N6—C9	1.362 (5)	С6—Н6	0.9300
O1—H1A	0.8500	С7—Н7	0.9300
O1—H1C	0.8500	С8—Н8	0.9300
O1—H1D	0.8499	C9—C10	1.343 (5)
O2—H2A	0.8500	С9—Н9	0.9300
O2—H2C	0.8500	C10—H10	0.9300
N2—N1—C1	104.1 (3)	С4—С3—Н3	119.5
N3—N2—N1	111.2 (3)	С2—С3—Н3	119.5
N3—N2—H2	124.4	C3—C4—C5	119.9 (3)
N1—N2—H2	124.4	С3—С4—Н4А	120.1
N2—N3—N4	108.3 (3)	С5—С4—Н4А	120.1
C1—N4—N3	105.4 (3)	C6—C5—C4	120.0 (3)
C8—N5—C10	107.3 (3)	C6—C5—N5	119.9 (3)

C8—N5—C5	125.3 (3)	C4—C5—N5	120.1 (3)
C10—N5—C5	127.4 (3)	C7—C6—C5	120.0 (3)
C8—N6—C9	108.6 (3)	С7—С6—Н6	120.0
H1A—O1—H1C	110.2	С5—С6—Н6	120.0
H1A—O1—H1D	110.2	C6—C7—C2	120.9 (4)
H1C—O1—H1D	108.5	С6—С7—Н7	119.6
H2A—O2—H2C	142.7	С2—С7—Н7	119.6
H2A—O2—H2D	101.7	N6-C8-N5	109.1 (3)
H2C—O2—H2D	108.1	N6—C8—H8	125.5
N4—C1—N1	111.1 (3)	N5—C8—H8	125.5
N4—C1—C2	124.6 (3)	C10—C9—N6	107.5 (4)
N1—C1—C2	124.3 (3)	С10—С9—Н9	126.2
C3—C2—C7	118.1 (3)	N6—C9—H9	126.2
C3—C2—C1	122.3 (3)	C9—C10—N5	107.5 (3)
C7—C2—C1	119.6 (3)	С9—С10—Н10	126.2
C4—C3—C2	121.0 (3)	N5-C10-H10	126.2
C1—N1—N2—N3	-0.1 (5)	C8—N5—C5—C6	23.6 (6)
N1—N2—N3—N4	0.1 (5)	C10—N5—C5—C6	-155.1 (4)
N2—N3—N4—C1	0.0 (5)	C8—N5—C5—C4	-157.2 (4)
N3—N4—C1—N1	-0.1 (5)	C10—N5—C5—C4	24.1 (6)
N3—N4—C1—C2	179.5 (4)	C4—C5—C6—C7	1.9 (6)
N2—N1—C1—N4	0.1 (4)	N5—C5—C6—C7	-178.9 (3)
N2—N1—C1—C2	-179.5 (3)	C5—C6—C7—C2	-0.4 (6)
N4—C1—C2—C3	163.4 (4)	C3—C2—C7—C6	-1.4 (6)
N1—C1—C2—C3	-17.1 (6)	C1—C2—C7—C6	178.6 (4)
N4—C1—C2—C7	-16.6 (6)	C9—N6—C8—N5	-0.5 (5)
N1—C1—C2—C7	162.9 (4)	C10—N5—C8—N6	0.2 (5)
C7—C2—C3—C4	1.8 (6)	C5—N5—C8—N6	-178.7 (3)
C1—C2—C3—C4	-178.2 (3)	C8—N6—C9—C10	0.7 (5)
C2—C3—C4—C5	-0.4 (6)	N6-C9-C10-N5	-0.6 (5)
C3—C4—C5—C6	-1.5 (6)	C8—N5—C10—C9	0.3 (5)
C3—C4—C5—N5	179.3 (3)	C5-N5-C10-C9	179.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$		
O2—H2D···N2 ⁱ	0.85	2.50	3.235 (7)	146		
O2—H2D···N3 ⁱ	0.85	1.98	2.823 (7)	172		
O2—H2C···O1 ⁱⁱ	0.85	2.15	2.994 (9)	170		
O2—H2A…O1	0.85	1.92	2.629 (9)	141		
O1—H1D····O2 ⁱⁱ	0.85	2.55	2.994 (9)	114		
01—H1D…O2	0.85	1.78	2.629 (9)	175		
O1—H1C···O1 ⁱⁱⁱ	0.85	1.96	2.806 (11)	175		
O1—H1A…N1	0.85	1.99	2.790 (5)	157		
N2—H2···N6 ^{iv}	0.86	1.90	2.758 (5)	174		
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$						

Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z-1.

Fig. 1

